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Several studies have demonstrated that the severity of social communication problems, a core symptom of Autism Spectrum
Disorder (ASD), is correlated with specific speech characteristics of ASD individuals. This suggests that it may be possible to develop
speech analysis algorithms that can quantify ASD symptom severity from speech recordings in a direct and objective manner. Here
we demonstrate the utility of a new open-source AI algorithm, ASDSpeech, which can analyze speech recordings of ASD children
and reliably quantify their social communication difficulties across multiple developmental timepoints. The algorithm was trained
and tested on the largest ASD speech dataset available to date, which contained 99,193 vocalizations from 197 ASD children
recorded in 258 Autism Diagnostic Observation Schedule, Second edition (ADOS-2) assessments. ASDSpeech was trained with
acoustic and conversational features extracted from the speech recordings of 136 children, who participated in a single ADOS-2
assessment, and tested with independent recordings of 61 additional children who completed two ADOS-2 assessments, separated
by 1–2 years. Estimated total ADOS-2 scores in the test set were significantly correlated with actual scores when examining either
the first (r(59)= 0.544, P < 0.0001) or second (r(59)= 0.605, P < 0.0001) assessment. Separate estimation of social communication
and restricted and repetitive behavior symptoms revealed that ASDSpeech was particularly accurate at estimating social
communication symptoms (i.e., ADOS-2 social affect scores). These results demonstrate the potential utility of ASDSpeech for
enhancing basic and clinical ASD research as well as clinical management. We openly share both algorithm and speech feature
dataset for use and further development by the community.
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INTRODUCTION
Autism Spectrum Disorder (ASD) is diagnosed by the presence of
social communication difficulties and the existence of Restricted
and Repetitive Behaviors (RRBs) [1]. Most ASD children exhibit
language delays during early childhood [2], with 25–30%
remaining minimally verbal (i.e., use < 50 words) throughout
childhood [3]. However, core ASD symptoms are not necessarily
evident in the amount of speech produced by an individual and
may instead be evident in the way they speak. Some ASD children
exhibit poorer fluency [4], echolalia (i.e., speech repetition) [5], mix
pronouns [6], and use atypical articulation and prosody [7, 8] that
are apparent in the acoustic features of their vocalizations [9, 10].
Studies have reported, for example, that verbal ASD children tend
to speak with higher pitch and larger pitch variability than
typically developing (TD) children [8, 9]. ASD children also exhibit
significantly fewer phoneme vocalizations [11], fewer conversa-
tional turns (i.e., reciprocating in a conversation) [11–13], more
non-speech vocalizations [12, 14], more distressed vocalizations
(crying, screaming) [15], and a lower ratio of syllables to
vocalizations [16] than TD children.

Several studies have used automated speech analysis techni-
ques to classify ASD and TD children based on extracted speech
features [17–24]. In some studies, diagnostic classification was
based on linguistic features such as vocabulary and fluency [24]
while in others it was based on acoustic features such as pitch
[18–20, 22, 23], jitter [20, 23], shimmer [20, 23], energy [18, 19],
Zero-Crossing Rate (ZCR) [18, 19], and Mel-Frequency Cepstral
Coefficients (MFCCs) [19].
Three recent studies have extended this research by training

machine and deep learning algorithms to estimate ASD severity
according to extracted speech features. In all these studies ground
truth was established by clinicians using the Autism Diagnostic
Observation Schedule Second edition (ADOS-2), a semi-structured
assessment where clinicians score the behavior of children during
specific tasks/games [25]. The ADOS-2 yields a total severity score
as well as separate Social Affect (SA) and Restricted and Repetitive
Behaviors (RRB) scores that quantify social difficulties and RRB
symptoms, respectively. In one recent study, the authors extracted
vocalization rates and durations from speech recordings of 33 ASD
children during an ADOS-2 assessment and reported that a trained
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synthetic random forest model was able to accurately estimate
their ADOS-2 Social Affect (SA) scores [26]. Another study
extracted hundreds of conversational, acoustic, and lexical speech
features from speech recordings of 88 adolescents and adults with
ASD during an ADOS assessment (First edition) and reported that
a trained Deep Neural Network (DNN) was able to accurately
estimate scores of four specific ADOS items that quantify the
ability to maintain a mature social conversation [27]. Finally, in a
third study, from our group, we extracted acoustic features such as
pitch and energy, and conversational features such as turn-taking
and speech rate from speech recordings of 72 children (56 with
ASD) during an ADOS-2 assessment [28]. We demonstrated that a
trained Convolutional Neural Network (CNN) model was able to
accurately estimate total ADOS-2 scores across multiple train-test
subsamples.
While these results are encouraging, algorithms developed so

far were trained and tested with relatively small ASD samples that
are not likely to represent the large heterogeneity of speech styles
and characteristics in the broad ASD population [9]. Moreover,
previous studies examined only a single timepoint of data from
each participant, thereby limiting the ability to assess the
reliability of algorithms to assess ASD symptom severity at
different developmental timepoints. Previous studies also did
not compare the ability of deep learning models to successfully

estimate the severity of social ASD symptoms versus RRB
symptoms. Most importantly, previous studies did not share their
algorithms and data in a transparent manner that would enable
re-production of results and further development of algorithms by
the research community.
To address these limitations, we created the largest speech

recording dataset available to date, which contained 99,193
vocalizations from 197 ASD children recorded in 258 ADOS-2
assessments, with 61 of the children participating in two ADOS-2
assessments that were separated by 1–2 years. This comprehen-
sive dataset enabled us to train and test the ASDSpeech algorithm
on different subsets of children and compare its accuracy across
two developmental timepoints as well as sex and age sub-groups.
In addition, we also examined the ability to estimate ADOS-2 SA
versus RRB scores (i.e., social difficulties versus RRB symptoms). We
intentionally used raw ADOS-2 scores, which have a considerably
wider range than ADOS-2 calibrated severity scores [29, 30],
thereby increasing the potential sensitivity of the algorithm.
Finally, we openly share the algorithm and speech feature dataset
to promote transparency and enable further use and development
by the research community.

METHODS
Participants and setting
We analyzed data collected at the Azrieli National Centre for Autism and
Neurodevelopment Research (ANCAN), a collaboration between Ben-
Gurion University of the Negev (BGU) and eight partner clinical centers
where ASD is diagnosed throughout Israel. ANCAN manages the national
autism database of Israel with data from >3000 children in 2023 and
growing [31, 32]. All recordings used in the current study were performed
in a single ANCAN assessment room located at Soroka University Medical
Center (SUMC), the largest partner clinical site. A total of 197 children (1–7-
years-old) who completed at least one ADOS-2 assessment between 2015
and 2021 and received an ASD diagnosis were included in this study
(Table 1). Of the participating children, 136 completed a single ADOS-2
assessment and 61 completed two ADOS-2 assessments at two timepoints
separated by 10–29 months, yielding 258 ADOS-2 assessments in total. All
ADOS-2 assessments were performed by a clinician with research
reliability. In addition, all participating children received an ASD diagnosis
from both a developmental psychologist and a child psychiatrist or
pediatric neurologist, according to Diagnostic and Statistical Manual of
Mental Disorders, Fifth Edition (DSM-5) criteria [33] and received ADOS-2
Calibrated Severity Score (CSS) ≥3 at their assessments.

ADOS-2 assessments
ADOS-2 is a semi-structured behavioral assessment where a clinician
administers specific tasks, observes the behavior of the child, and scores
their behavior [25]. The total ADOS-2 score (range: 0–30) is the sum of the
Social Affect (SA, range: 0–22) and Restricted and Repetitive Behavior (RRB,
range: 0–8) scores, with higher scores indicating more severe symptoms. In
addition, it is possible to compute CSS scores (range: 1–10) from total, SA,
and RRB scores to standardize autism severity across ages and language
levels that differ across ADOS-2 modules [34].

Recording setup
All ADOS-2 recordings were performed using a single microphone (CHM99,
AKG, Vienna) located on a wall, ~1–2m from the child, and connected to a
sound card (US-16x08, TASCAM, California). Each ADOS-2 session lasted
~ 40-min (40.75 ± 11.95 min) and was recorded at a sampling rate of
44.1 kHz, 16 bits/sample (down-sampled to 16 kHz).

Detection of child vocalizations
Recordings were manually annotated to identify segments with each
child’s vocalizations. We chose to use manual annotation rather than
automated diarization, because current diarization algorithms for children’s
speech in noisy environments exhibit low accuracy with error rates of
~30% even when analyzing recordings of older children [35, 36]. We would
expect error rates in recordings of young ASD children to be even higher.
We instructed the manual annotators to label segments that contained

the child’s speech, laughing, moaning, crying, or screaming (i.e., any

Table 1. Participating children’s characteristics.

Single
assessment

Two assessments

(N= 136) T1 (N= 61) T2 (N= 61)

Mean (SD)

Age (years) 4.26 (1.34) 3.67 (0.98) 4.95 (0.94)

ADOS-2 Total 14.99 (5.88) 14.92 (5.85) 14.92 (5.61)

ADOS-2 SA 10.75 (4.96) 11.26 (5.14) 10.57 (4.55)

ADOS-2 RRB 4.24 (1.88) 3.66 (1.66) 4.34 (1.87)

Parental education (years)

Maternal 13.96 (2.99) 13.44 (2.98)

Paternal 13.67 (2.76) 13.45 (2.41)

Parental age at birth (years)

Maternal 31.20 (5.25) 33.15 (5.51)

Paternal 34.29 (5.91) 36.39 (7.57)

N (%)

Sex

Male 108 (79) 42 (69)

Female 28 (21) 19 (31)

Module

Module T 17 (13) 9 (15) 0 (0)

Module 1 45 (33) 329 (48) 28 (46)

Module 2 40 (29) 21 (34) 19 (31)

Module 3 3 (25) 2 (3) 14 (23)

Parental origin (both parents)

Africa 7 (5) –

Bedouin 5 (4) –

Europe 7 (5) 4 (7)

East Asia 5 (4) 3 (5)

Middle east 65 (48) 39 (64)

Mixed 32 (23) 13 (21)

South America 4 (3) 1 (2)

Unknown 11 (8) 1 (2)
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vocalization). To assess the accuracy of manual labeling we examined
inter-rater reliability across two raters who labeled child vocalizations
within the same 10-min recordings of 25 children. This analysis yielded an
inter-rater accuracy of 88.48% ± 5.97, kappa of 0.60 ± 0.13, and F1 score of
79.56% ± 15.82.
Manually annotated child segments often contained multiple vocaliza-

tions (e.g., multiple utterances) separated by silence (Supplementary Fig.
S1). Each segment was separated into multiple vocalizations using energy
thresholds relative to the background noise. Specifically, the start of a
vocalization was defined as the point where the energy level exceeded
2.79 dB+ Eb for at least 50ms, and the end was marked when the energy
exceeded 0.4 dB+ Eb for 50ms (Eb= background noise energy through-
out the recording) [28]. The background noise equaled the most frequent
energy level within each recording, based on the assumption that
vocalizations are sparse. Vocalizations that were shorter than 110ms were
excluded from further analysis (too short to contain an utterance).

Features
We extracted 49 speech features from the child vocalizations that were
categorized into nine groups: pitch, formants, jitter, voicing, energy, Zero-
Crossing Rate (ZCR), spectral slope, duration, and quantity/number of
vocalizations. All features, except duration and quantity, were first
extracted in 40ms windows (window overlap of 75%), resulting in a
vector of feature values per vocalization. The minimum, the maximum, and
the mean pitch of the voiced vocalizations (across windows) were
computed, deriving one value for each vocalization. We then selected a
group of 10 consecutive vocalizations and computed the mean and
variance across vocalizations for relevant features (Supplementary Table
S1). We also computed the mean duration of vocalizations and the overall
number of vocalizations in the recording. Taken together, these steps
yielded a vector with 49 values corresponding to the 49 features per 10
vocalizations. We performed this procedure 100 times, selecting random
groups of ten consecutive vocalizations from the recording. Combining
these 100 samples yielded a features matrix of 100×49 per child
(Supplementary Fig. S2), with the last column (quantity of vocalizations)
containing the same value across all rows. Features included:

Frequency related features:

● Pitch (F0): Vocal cords vibration frequency (the fundamental
frequency) that exists only in voiced speech (e.g., vowels). Voiced
Vocalization (VV) was defined as a vocalization where most of its
frames (≥ 60%) [10] were voiced (voicing threshold 0.45).

● Formants: The resonant frequencies of the vocal tract that shape vowel
sounds [37]. The first two formants (F1 and F2) relate to tongue
position (vertical and horizontal) and influence vowel quality. Their
bandwidths affect the clarity of speech.

● Jitter: Variation across adjacent pitch values representing frequency
instability [38].

● Voicing: Pitch peak amplitude as determined by the autocorrelation
function.
Pitch and formants were calculated using the PRAAT software [39],

with a pitch range set to 60–1600 Hz (a wide range to increase
sensitivity to atypical vocal characteristics).

Energy/amplitude related features:

● Energy: We computed the energy ratio between each child’s
vocalization and the background noise level to normalize this feature
across recordings performed on different days where background
noise may have varied. The background noise equaled the most
frequent energy level within each recording, based on the assumption
that vocalizations are sparse.

Spectral features:

● Zero-Crossing Rate (ZCR): The number of zero-crossings apparent in
audio segments with child vocalizations [40].

● Spectral slope: The slope of the linear regression on the logarithmic
power spectrum within the frequency bands of 20–500 Hz (lower
band) and 500–1500 Hz (higher band) [41, 42].

Conversational features:

● Duration: Child’s mean vocalization length.
● Quantity: The total number of vocalizations.

All features, except for Pitch and Formants, were extracted with custom-
written code in Matlab (Mathworks, Inc.).

Training and testing ASDSpeech
Training was performed with data from the 136 children who completed a
single ADOS-2 session only. Feature matrices were used to train two deep
learning models with an identical CNN architecture (Supplementary Fig.
S3). The first model estimated ADOS-2 SA scores and the second estimated
ADOS-2 RRB scores. Training was based on minimizing the Mean Squares
Error (MSE) of a regression analysis between estimated and actual scores,
using the RMSprop (Root Mean Square Propagation) as the optimization
algorithm [43]. The training process was preformed 25 times, creating 25
different SA and 25 RRB models that were trained with different
combinations of training data sub-samples and learning parameters. We
considered this analogous to having 25 clinicians, each with a different
learning style and different clinical experience. First, we performed the
feature extraction procedure described above five times for each child.
Since feature extraction included a random selection of consecutive
vocalizations, this resulted in five different sub-samples of the data. When
training each model (separately for SA and RRB) we split the training data
into a training-set (80%) and validation set (20%) and applied a random
search algorithm to optimize the following learning parameters: batch size,
number of epochs, and learning rate, while applying early stopping of
patience after 20 epochs to reduce overfitting [44]. Optimal learning hyper-
parameters were selected based on the highest concordance correlation
coefficient [45], between estimated and actual ADOS-2 scores in the
training and validation sets respectively. This procedure was performed
five times using different selections of validation data (i.e., 5-fold cross
validation), yielding 5 models with different learning parameters per data
sub-sample and 25 models in total for SA and RRB scores separately.
Testing was performed with an entirely independent dataset of 61 ASD

children who completed two ADOS-2 assessments. For each of these
children we estimated a separate SA and RRB score from each of the 25
models described above and then computed their mean, yielding a single
SA and RRB score per child. This is analogous to a clinical consensus across
the 25 models. Accuracy of ASDSpeech estimation was measured using
Pearson correlation and NRMSE (RMSE / (ymax - ymin), where y is the actual
ADOS-2 score), which were calculated between the estimated and actual
ADOS-2 scores in the testing dataset, separately for the first and second
ADOS-2 assessments (i.e., T1 and T2).
In addition, we trained and tested additional models to estimate ADOS-2

total, SA, and RRB CSS instead of raw scores while using the same
procedures described above.

Estimating feature importance
We assessed the importance of specific features for accurately estimating
ADOS-2 scores by excluding each feature from the testing dataset and
checking the impact on the model’s accuracy. We replaced the values of
individual features in the test data with zeros, one feature at a time, and
then checked the model's performance by computing the correlation
between estimated and real total ADOS-2 scores (Supplementary Fig. S5).
The performance degradation resulting from excluding each feature
provided an estimate of that feature’s importance, with larger reductions in
correlation indicating higher importance of the feature.

Hardware
All model training, optimization, and training were performed using
custom-written code in Python 3.9.13 using a Keras API 2.6.0 with
TensorFlow (version 2.6.0) backend. The training was conducted on an
IntelI XI(R) Gold 6140 CPU@2.30GHz and NVIDIA GPU Tesla T4.

Statistical analysis
All statistical analyses were conducted using custom-written code in
Python. Associations between each of the features and ADOS-2 scores
were quantified using Pearson correlations. To evaluate their statistical
significance, we performed a random permutation test where we
randomly shuffled the actual ADOS-2 scores across children before
calculating the correlation with each feature. This non-parametric
randomization procedure was performed 1,000 times, generating a null
distribution of correlation values expected by chance when using the
sample distribution of ADOS-2 scores that was not necessarily normal (a
necessary pre-requisite for parametric statistical tests). For a correlation
between a speech feature and ADOS-2 score to be considered significant,
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the actual correlation value had to exceed the 97.5 percentile of the null
distribution. We used an equivalent analysis to assess the statistical
significance of correlations between actual and estimated ADOS-2 scores.
We also performed a similar analysis with NRMSE values, where we
assessed whether the actual NRMSE value was smaller than the 2.5
percentile of the null distribution. These statistical tests assessed whether
correlation values were higher than expected by chance and NRMSE values
were lower than expected by chance.
To determine the significance of a feature for accurate estimation of

ADOS-2 scores, we performed the following bootstrap procedure. We
drew 61 samples (with replacement) from the test set and calculated
the Pearson correlation between actual and estimated ADOS-2 scores
once while including all features and again when excluding one feature
(i.e., setting its values to zero). We repeated this procedure 1000 times
and computed the difference in correlation values per iteration,
yielding a distribution of 1000 values representing the difference in
accuracy when removing a feature. For the feature to be considered
significantly important, 97.5% of the difference distribution had to
exceed zero.
We also used the same analysis to determine the significance of

accuracy differences across estimations of SA and RRB scores, estima-
tions of male and female children, and estimations of younger and older
children. In all cases we used the same bootstrapping procedure to
select subgroups of 61 children (with replacement) and computed the
Pearson correlation between actual and estimated ADOS-2 scores per
iteration. We then computed the correlation difference across groups
(e.g., SA and RRB or males and females) and determined what percentile
of the difference distribution was larger than zero to assess significance
(e.g., 97.5 percentile would correspond to a p-value of 0.05 in a two-
tailed test).

Power analysis
Given our previous findings [28] showing a strong correlation between
estimated and actual ADOS scores (r= 0.718), the sample size of
61 subjects in the test set provides 100% power for detecting a significant
correlation in the current study.

RESULTS
Using the data from the 136 ASD children in the training dataset,
we examined the relationships between each of the 49 features
and ASD symptom severity as defined clinically by the children’s
ADOS-2 scores. Thirty-one features exhibited significant Pearson
correlation coefficients with total ADOS-2 scores (i.e., sum of SA
and RRB scores), 31 with ADOS-2 SA scores, and 28 with ADOS-2
RRB scores (Fig. 1). While some features, such as the number of
vocalizations, exhibited a stronger correlation with SA than RRB
score, others, such as mean jitter, exhibited the opposite
(Supplementary Fig. S4). Hence, different features seem to carry
distinct information regarding each of the two core ASD
symptoms, demonstrating the potential opportunity for a deep
learning algorithm to learn relevant associations.

Longitudinal stability of ADOS-2 scores
The 61 ASD children in the test dataset exhibited similar ADOS-2
scores across their two assessments, which were separated by 1–2
years, indicating overall stability in severity over time. Significant
correlations were apparent across first and second assessments for
ADOS-2 total (r(59)= 0.743, P < 0.001), ADOS-2 SA (r(59)= 0.666,
P < 0.001), and ADOS-2 RRB (r(59)= 0.5, P < 0.001) scores (Fig. 2).

Training and testing the ASDSpeech algorithm
We trained the ASDSpeech algorithm with data from 136 ASD
children in the training dataset. The algorithm included two
separate CNN models that were trained to estimate ADOS-2 SA and
RRB scores independently, given that different speech features
were associated with each symptom domain. The accuracy of the
algorithm was tested with data from two independent ADOS-2
recordings of the 61 children in the testing dataset where
ASDSpeech estimated the SA, RRB, and total ADOS-2 (sum of SA
and RRB) scores of each child per recording (Fig. 3).
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Fig. 1 Pearson correlation coefficients between each of the extracted features and ADOS-2 scores from the 136 children in the training
dataset. Correlation coefficients are presented for total ADOS-2 scores (a), ADOS-2 SA scores (b), and ADOS-2 RRB scores (c). Each color
represents a different group of features. Asterisks: significant Pearson correlation (*< 0.05, **≤ 0.01, *3 ≤ 0.001, *4 ≤ 0.0001).
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Estimated total ADOS-2 scores were significantly correlated with
actual scores at T1 (r(59)= 0.544, P < 0.0001) and T2 (r(59)= 0.605,
P < 0.0001). Similarly, estimated ADOS-2 SA scores were signifi-
cantly correlated with actual scores at T1 (r(59)= 0.502, P < 0.0001)
and T2 (r(59)= 0.592, P < 0.0001). In contrast, estimated ADOS-2
RRB scores were not significantly correlated with actual RRB scores
at T1 (r(59)= 0.093, P= 0.474), exhibiting significant correlations
only at T2 (r(59)= 0.332 P= 0.009) with a relatively weaker effect
size. Correlations of estimated and actual ADOS-SA score were
significantly higher than correlations of estimated and actual
ADOS-RRB score as assessed by a permutation analysis (T1:
P= 0.016, T2: P= 0.038).
Normalized Root Mean Squared Error (NRMSE) between

estimated and actual total ADOS-2 scores was significantly smaller
than expected by chance when computed at T1 (NRMSE= 0.164,
P < 0.0001) and T2 (NRMSE= 0.149, P= 0.0001). Similarly, NRMSE
between estimated and actual ADOS-2 SA scores was significantly
smaller than expected by chance when computed at T1
(NRMSE= 0.200, P < 0.0001) and T2 (NRMSE= 0.170, P < 0.0001).
In contrast, NRMSE between estimated and actual ADOS-2 RRB
scores was not significantly smaller than expected by chance at T1
(NRMSE= 0.219, P= 0.460), exhibiting significant results only at T2
(NRMSE= 0.225, P= 0.006). The statistical significance of the
NRMSE results was determined with a randomization analysis (see
Methods). NRMSE values of ADOS-SA score were significantly
lower than the NRMSE values of ADOS-RRB score at T2 (P= 0.012)
but not at T1 (P= 0.432) as assessed using a permutation analysis.
Similar results were also found when training and testing the

model with ADOS-2 CSS scores. Most importantly, consistent
significant correlations were found between estimated and actual
ADOS-2 SA CSS scores at both timepoints (Supplementary
Table S2).

Differences across age and sex subgroups
Next, we examined whether ASDSpeech accuracy differed across
age and sex subgroups (Fig. 4). Estimated total ADOS-2 scores
were significantly correlated with actual scores when examining
children above the median age at T1 (r(28)= 0.604, P < 0.0001,
median age= 45 months) or T2 (r(25)= 0.612, P < 0.0001, median
age= 61 months) and children below the median age at T1
(r(29)= 0.485, P= 0.008) or T2 (r(32)= 0.657, P < 0.0001). There
were no significant differences in the algorithm’s accuracy
between younger and older children at T1 (P= 0.540) or T2
(P= 0.780) as tested with a bootstrap permutation analysis.
Similarly, estimated total ADOS-2 scores were significantly
correlated with actual scores when examining males at T1:
(r(40)= 0.631, P < 0.0001) or T2 (r(40)= 0.601, P < 0.0001).

Estimated ADOS-2 scores were also significantly correlated with
actual scores when examining females at T2 (r (17)= 0.627,
P= 0.008), but not at T1 (r (17)= 0.363, P= 0.140). Nevertheless,
there were no significant differences in the algorithm’s accuracy
between males and females at T1 (P= 0.198) or T2 (P= 0.930) as
tested with a bootstrap permutation analysis.
Comparison of NRMSE across subgroups showed similar results.

NRMSE between the estimated and actual ADOS-2 scores was
significantly smaller than expected by chance when examining
younger children at T1 (NRMSE= 0.173, P= 0.008) or T2
(NRMSE= 0.150, P < 0.0001) as well as older children at T1
(NRMSE= 0.154, P < 0.0001) or T2 (NRMSE= 0.149, P < 0.0001).
There were no significant differences in the algorithm’s accuracy
between younger and older children at T1 (P= 0.434) or T2
(P= 0.992). NRMSE were also significantly smaller than expected
by chance when examining males at T1 (NRMSE= 0.149,
P < 0.0001) or T2 (NRMSE= 0.144, P < 0.0001). For females this
was the case only at T2 (NRMSE= 0.161, P= 0.008) and not at T1
(NRMSE= 0.193, P= 0.140). Nevertheless, there were no signifi-
cant differences in the algorithm’s accuracy between males and
females at T1 (P= 0.094) or T2 (P= 0.588) as tested with a
bootstrap permutation test.

Longitudinal stability of ASDSpeech
Next, we examined the stability of ASDSpeech estimated ADOS-2
scores across the two time-points. There were significant
correlations between the estimated ADOS-2 SA scores
(r(59)= 0.649, P < 0.0001) and total ADOS-2 scores (r(59)= 0.687,
P < 0.0001) at T1 and T2. There was no significant correlation
between estimated ADOS-2 RRB scores (r(59)= 0.203, P= 0.117)
across timepoints (Fig. 5).

Feature importance
To determine the relative importance of each feature in accurately
estimating ADOS-2 total scores we eliminated individual features
from the test dataset by replacing their values with zeros, one at a
time. We then examined whether accuracy was reduced (i.e.,
correlations were smaller) when each feature was excluded
(Supplementary Fig. S5). The results revealed that excluding
individual features had limited impact on the accuracy of the
algorithm. When examining T1 data, excluding variance of Second
formant, mean of pitch in voiced vocalizations, mean spectral
slope in range [500, 1500]Hz in voiced vocalizations, mean Second
derivate of energy, and variance of ZCR in voiced vocalizations
yielded significant reductions in accuracy (i.e., weaker correlations
between estimated and actual ADOS-2 total scores). However, in
T2 data accuracy was not significantly negatively affected by

Fig. 2 Scatter plots demonstrating stability in ADOS-2 scores across first and second assessments (T1 and T2). a ADOS-2 SA scores.
b ADOS-2 RRB scores. c Total ADOS-2 scores (sum of SA and RRB scores). Asterisk: statistical significance of the Pearson correlation coefficient
(P < 0.0001). Shaded areas: 95% confidence intervals. Children located below the diagonal (dashed line) exhibited lower ASD severity at T2
(improvement), while children above the diagonal exhibited the opposite.
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exclusion of any feature and only positively affected by the
exclusion of mean First derivative of the energy. This suggested
that there was large redundancy across features such that
removing individual features did not have a strong or consistent
impact on accuracy.

DISCUSSION
Our results demonstrate the ability of ASDSpeech to quantify the
severity of social symptoms in ASD children from recordings of
their speech during ADOS-2 assessments. The algorithm, trained

with recordings from 136 ASD children, was able to accurately
estimate total ADOS-2 and ADOS-2 SA scores in an entirely
independent sample of 61 ASD children, who were recorded at
two different developmental timepoints separated by 1–2 years
(Fig. 3). It is remarkable that ASDSpeech was able to achieve this
despite the large heterogeneity in language fluency and speech
articulation abilities apparent across ASD children [46] as well as
the large developmental changes that take place in speech
abilities during the examined period of early childhood [47].
Moreover, the accuracy of ASDSpeech is remarkable given that
many social difficulties assessed during the ADOS-2 assessment

Fig. 3 Accuracy of ASDSpeech. Scatter plots demonstrating the fit between estimated and actual scores for the children at T1 (left column)
and T2 (right column). a, b Total ADOS-2 scores (sum of SA and RRB scores). c, d ADOS-2 SA scores. e, f ADOS-2 RRB scores. Pearson correlation
coefficients and NRMSE values are noted in each panel. Solid line: Linear fit. Dashed line: diagonal (unity line). Asterisks: statistical significance
as determined by randomization test (P < 0.05).
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manifest themselves in behaviors that have little to do with
speech including difficulties with eye contact, imitation, joint
attention, and other social behaviors [3, 48]. This suggests that
combining ASDSpeech with analysis of eye tracking [49–51], facial
expressions [52], and body movement [53] data from the same
children will enable even higher accuracy and reliability in
estimating ASD symptoms.

Correlation analyses revealed that ASDSpeech was considerably
more accurate and reliable at estimating social ASD symptoms
captured by the ADOS-2 SA scores in contrast to the RRB
symptoms captured by the ADOS-2 RRB scores (Figs. 3 and 5).
Note that accurate estimation of total ADOS-2 scores (Fig. 3) was
likely based on the accurate estimation of SA scores that account
for two-thirds of the total scores. We believe there may be several
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Fig. 4 ASDSpeech accuracy as a function of sex and age at T1 and T2. a, b Pearson correlation values. c, d Normalized Root Mean Squared
Error (NRMSE) values. a, c Comparison between younger and older children (median split according to age at each timepoint).
b, d Comparison between males and females. Asterisks: statistical significance as determined by randomization test (P < 0.05).

Fig. 5 Scatter plots demonstrating stability in ASDSpeech estimated scores across first and second assessments (T1 and T2). a Estimated
ADOS-2 SA scores. b Estimated ADOS-2 RRB scores. c Estimated total ADOS-2 scores (sum of estimated SA and RRB scores). Asterisk: statistical
significance (P < 0.0001). Shaded areas: 95% confidence intervals.
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reasons for the more accurate estimation of SA scores. First, the
limited range of the ADOS-2 RRB scale (0–8) relative to the SA
scale (0–22) may make it difficult for the algorithm to identify
differences across children. Indeed, a recent study reported that
the limited number of items on the RRB scale resulted in poor
scale reliability across participants [54]. Second, the selected
speech features in the current study exhibited weaker correlations
with RRB than SA scores (Fig. 1). Extraction of additional speech
features, such as phrase or intonation repetitions (indicative of
echolalia) may improve the accuracy of ADOS-2 RRB score
estimates. Regardless, our results motivate separate modeling of
social and RRB symptom domains as each of them is likely
associated with distinct features of speech.
Models trained and tested on raw ADOS-2 scores (Fig. 3) clearly

out -performed models trained on ADOS-2 CSS scores (Supple-
mentary Table S2). While ADOS-2 CSS are important for longitudinal
assessments of coarse changes in severity [2, 55], their restricted
scoring range likely limits the sensitivity of deep learning algorithms
in identifying differences across children. By demonstrating that
ASDSpeech achieves robust accuracy in estimating raw ADOS-2 SA
scores across different age groups and developmental timepoints
we show that severity estimations are independent of these factors,
thereby justifying the use of raw scores.

Diagnostic classification with speech analysis algorithms
A variety of previous studies have reported that individuals with
ASD, on average, speak differently than TD individuals [4, 8–16].
According to these studies, ASD individuals exhibit atypical
speech characteristics, including significantly fewer phonemes
per utterance [11], fewer conversational turns [13], higher pitch
[9, 19], and larger pitch range and variability [8, 9] than TD
children. Differences in these and other speech characteristics
have enabled the development of machine and deep learning
classification algorithms that can identify ASD and TD individuals
with reported accuracy rates of 75–98% [17–23].
However, these relatively high classification accuracies are likely to

be inflated due to the small sample size of most studies (<40 ASD
participants) that are not likely to capture the true heterogeneity of
ASD symptoms or speech styles/characteristics of the broad ASD
population. Indeed, even “gold standard” clinical tests such as the
ADOS-2, exhibit ~80% accuracy in identifying children who will
eventually receive an ASD diagnosis [56]. This is because establish-
ing an ASD diagnosis requires clinicians to incorporate additional
information from parent interviews and other clinical assessments
[57]. Clinicians also report high diagnosis certainty in only ~70% of
ASD children because the presentation of ASD symptoms is
equivocal in ~30% of cases [58]. These studies suggest an expected
upper limit of 70–80% accuracy when attempting to identify ASD
using digital phenotyping techniques such as speech analysis.
Nevertheless, it is highly encouraging that speech features contain
information enabling the separation of ASD and TD children.

Quantifying ASD severity with speech analysis algorithms
A more complex task is to develop machine and deep learning
algorithms that can quantify the severity of core ASD symptoms.
Results presented in the current and previous study from our lab
[28] demonstrated that multiple speech features were significantly
correlated with SA and/or RRB ADOS-2 scores (Fig. 1), suggesting
that distinct combinations of speech features are associated with
each of the two core ASD domains.
Three recent studies have attempted to use these relationships

to estimate ADOS-2 scores by analyzing speech recordings of ASD
individuals [26–28]. The first trained a synthetic random forest
model to estimate ADOS-2 SA scores according to vocalization
rate and turn-taking features extracted from ADOS-2 recordings of
33 ASD children. The algorithm was able to estimate ADOS-2 SA
scores that were significantly correlated with actual scores
(r= 0.634). The second study utilized a DNN model to estimate

four ADOS (first edition) item scores using hundreds of conversa-
tional and acoustic features extracted from speech recordings of
88 high-functioning ASD adolescents/adults during an ADOS
assessment [27]. This algorithm was able to estimate scores that
exhibited significant Spearman correlations with the actual scores
(ρ= 0.519–0.645). Finally, in a previous study from our lab [28], we
demonstrated that a CNN model was able to estimate ADOS-2
total scores that were significantly correlated with actual scores
(r= 0.718) when using 60 conversational and acoustic features
extracted from speech recordings of 72 children (56 of them with
ASD) during ADOS-2 assessment.
The current study extends previous work in several critical ways.

First, we utilized a considerably larger dataset (258ADOS-2 recordings)
thatwas at least three times larger than theonesused todate. Thiswas
important for trainingASDSpeechwith speech recordings forma large
cohort with heterogeneous language abilities. Second, the 61 ASD
children in our testing dataset were recorded twice during two ADOS-
2 assessments separated by 1–2 years. This enabled us to test the
robustness of ASDSpeech across two developmental timepoints.
Third, we trained ASDSpeech to estimate ADOS-2 SA and ADOS-2 RRB
scores using separate CNNmodels. The results demonstrated that this
separation was critical with accurate performance apparent primarily
for the ADOS-2 SA scores. Fourth, the large sample size enabled us to
demonstrate that ASDSpeech accuracy was similar across age and sex
subgroups. Fifth, the recordings utilized in the current study were
performed over a 6-year period in a busy public healthcare medical
center that services a population of ~1 million people. Recordings
were performed with a wall mounted microphone (see Methods) in
“real world” noisy conditions (e.g., announcement system in the
hallway). This demonstrates the robustness of ASDSpeech to variable
recording conditions.
ASDSpeech achieved similar accuracy to that reported in

previous studies. The important advance in the current study is
in demonstrating that this accuracy is specific to social symptoms
captured by ADOS-SA scores and robust to age and develop-
mental stage of the examined children when examining a large
heterogeneous population within an active clinical setting. Most
importantly, we openly share ASDSpeech and its associated
dataset with the research community.

Limitations
The current study has several limitations. First, we did not examine
the language content of the recordings, which is likely to improve
the estimation of ASD symptom severity [4, 24]. Second, we did
not identify echolalia, crying, or shouting events that are likely to
be informative of RRB symptoms. Indeed, our weaker results
estimating RRB scores suggest that different speech features are
necessary for estimating severity in this domain. Third, we did not
apply any noise reduction or multi-speaker analysis techniques to
improve the quality of the analyzed vocal segments. Fourth, our
sample had a (4:1) male to female ratio, which is equivalent to the
sex ratio in the national ASD population of Israel [59]. Hence,
higher ASDSpeech accuracy for males at T1 may be due to the
larger number of males in the training and testing datasets, a
sampling bias that could be rectified by future studies. Fifth, we
used manual annotation to identify child vocalizations, which is
highly accurate, but also labor-intensive and not scalable. Future
work could investigate integration of automated diarization
methods. Finally, our analyses were limited to 1–7-years-old
children and the accuracy of ASDSpeech in estimating ASD
severity in older children remains to be determined.

CONCLUSIONS
This study adds to accumulating evidence demonstrating that
speech recordings contain reliable information about the social
symptom severity of ASD children. We demonstrate the ability of
the ASDSpeech algorithm to quantify these symptoms in a robust
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manner across two developmental timepoints with recordings
that were performed within a busy community healthcare center.
We openly share the algorithm and its associated dataset for
further use, testing, and development by the research community
and are confident that future versions of the algorithm will
achieve even higher and more robust accuracy rates, yielding a
transformative new tool for clinical and basic ASD research.

DATA AVAILABILITY
The entire feature dataset used for training and testing are available at https://
github.com/Dinstein-Lab/ASDSpeech.

CODE AVAILABILITY
The ASDSpeech algorithm source-code is available at https://github.com/Dinstein-
Lab/ASDSpeech.
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