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Abstract

Background Difficulties with non-verbal communication, including atypical use of facial expressions, are a core
feature of autism. Quantifying atypical use of facial expressions during naturalistic social interactions in a reliable,
objective, and direct manner is difficult, but potentially possible with facial analysis computer vision algorithms that
identify facial expressions in video recordings.

Methods We analyzed > 5 million video frames from 100 verbal children, 2-7 years-old (72 with autism and 28
controls), who were recorded during a ~45-minute ADOS-2 assessment using modules 2 or 3, where they interacted
with a clinician. Three different facial analysis algorithms (iMotions, FaceReader, and Py-Feat) were used to identify the
presence of six facial expressions (anger, fear, sadness, surprise, disgust, and happiness) in each video frame. We then
compared results across algorithms and across autism and control groups using robust non-parametric statistical
tests.

Results There were significant differences in the performance of the three facial analysis algorithms including
differences in the proportion of frames identified as containing a face and frames classified as containing each of
the six examined facial expressions. Nevertheless, analyses across all three algorithms demonstrated that there were
no significant differences in the quantity of any facial expression produced by children with autism and controls.
Furthermore, the quantity of facial expressions did not correlate with autism symptom severity as measured by
ADOS-2 CSS scores.

Limitations The current findings are limited to verbal children with autism who completed ADOS-2 assessments
using modules 2 and 3 and were able to sit in a stable manner while facing a wall-mounted camera. Furthermore, the
analyses focused on comparing the quantity of facial expressions across groups rather than their quality, timing, or
social context.
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their quantity during natural social interaction.

social interaction, Automated symptom quantification

Conclusions Commonly used automated facial analysis algorithms exhibit large variability in their output when
identifying facial expressions of young children during naturalistic social interactions. Nonetheless, all three algorithms
did not identify differences in the quantity of facial expressions across groups, suggesting that atypical production of
facial expressions in verbal children with autism is likely related to their quality, timing, and social context rather than

Keywords Autism spectrum disorder, Facial expressions, Computer vision, Automated facial analysis, Naturalistic

Background

Facial expressions play a central role in non-verbal com-
munication, conveying states, emotions, and intentions
that are essential for effective social interaction [1, 2].
Difficulties in non-verbal communication are a core
symptom of autism [3], which can include the produc-
tion of facial expressions that appear exaggerated, awk-
ward, or flat and using facial expressions in different ways
that impede social communication [4]. These difficulties
may be associated with Alexithymia (i.e., difficulties iden-
tifying one’s own emotions), which appears in ~50% of
individuals with autism [5, 6]. Despite the central role of
facial expressions in social communication, few attempts
have been made to quantify them in individuals with
autism.

Previous studies have mostly used manual ratings or
annotations to quantify differences in facial expressions
across autism and control groups. For example, in some
studies autistic and control individuals were explicitly
instructed to pose or imitate specific facial expressions
while they were recorded with video. When neurotypi-
cal [7-9] or autistic [10] individuals were asked to rate
the recorded facial expressions, they reported that facial
expressions produced by individuals with autism were
similar in accuracy, but were more ambiguous, awkward,
and atypical than those of controls. Additional studies
manually coded spontaneous facial expressions of autis-
tic children during short 8-minute videos of social inter-
actions with an adult clinician who administered the
Early Social-Communication Scales (ESCS) assessment
[11]. The first, using the Maximally Discriminative Move-
ment Analysis coding system, found fewer positive-affect
expressions in children with autism compared to controls
[12], whereas the second, using the Affex coding system,
reported no significant differences across groups [13].

A meta-analysis of facial expression studies that used
a variety of manual techniques reported that individu-
als with autism exhibit fewer, shorter, less accurate, and
more awkward facial expressions than controls [4]. How-
ever, most of the examined studies reported results from
relatively small samples (<20 children per group) and
extremely short video recordings. Since facial expres-
sions can vary significantly across individuals and over
time, establishing generalizable conclusions requires
moving beyond small-scale investigations of short video

clips to the analysis of longer recordings from larger
cohorts, necessitating the use of automated facial analysis
algorithms.

Over the last decade multiple computer vision algo-
rithms with the ability to identify facial expressions in
video recordings have been released [14] including iMo-
tions FACET [15], iMotions AFFDEX [16], OpenFace
[17], FaceReader [18], and Py-Feat [19]. These have been
applied to analyze videos of individuals with autism who
were explicitly asked to pose or imitate facial expressions.
One study using the iMotions FACET algorithm reported
that posed facial expressions involved weaker muscle
contractions (i.e., activation of action units) in the autism
group relative to the control group, particularly for hap-
piness [20]. However, others using OpenFace found no
significant difference in the intensity of action unit acti-
vations across groups in any posed expression [17, 21].
When applying the iMotions FACET algorithm to video
recordings of participants watching movies, one study
reported that individuals with autism exhibited more
neutral facial expressions than controls [5], while another
did not find any differences across groups [22]. A third
using a custom-built algorithm also reported more neu-
tral facial expressions in children with autism than con-
trols as they watched a series of movie clips [23].

Only three studies to date have used automated algo-
rithms to examine spontaneous facial expressions dur-
ing naturalistic social interactions, a context where
individuals with autism are expected to exhibit the larg-
est difficulties. The first used OpenFace to analyze video
recordings of 10-minute conversations between adoles-
cents and their mothers or a female research assistant
[24]. In comparison to controls, adolescents with autism
exhibited significantly fewer facial action unit activations
when smiling and poor facial synchronization with the
research assistant, but not with their mother. The second
examined videos of a 7-minute dialog between adults and
an actress, also using OpenFace [25]. This study reported
that adults with autism exhibited less frequent mimicry
(i.e., synchronization) than controls, less frequent activa-
tion of smiling action units in parts of the dialog intended
to evoke positive emotions, and more frequent activation
of disgust action units in parts of the dialog intended to
evoke negative emotions [25]. Finally, a third study used
FaceReader to quantify facial expressions of adults in
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~1-minute segments of video recorded during the car-
toon task of the ADOS-2, module 4 assessment. They
reported more neutral and fewer happy facial expressions
in the autism group relative to controls [26].

Taken together, these studies examined short video
segments with different facial analysis algorithms and
reported mixed results regarding potential differences
in the quantity, quality, and synchronization of facial
expressions produced by individuals with autism. More-
over, these studies were performed with adolescents and
adults and only one used video recordings from ADOS-2
assessments, which are commonly available in many clin-
ical and research settings and offer a standardized semi-
structured context for evaluating social communication
difficulties.

The current study had several hypothesis-driven and
exploratory goals. First, we wanted to examine facial
expressions in young children with autism (2-7 years
old) rather than adolescents/adults. We hypothesized
that strong differences in the production of facial expres-
sions will be evident across autistic and control chil-
dren given that autistic adolescent/adults may develop
compensations for early difficulties over time. Second,
given that previous studies used a variety of facial analy-
sis algorithms and reported different results, we wanted
to explore the reliability of quantified facial expressions
across three commonly used algorithms: iMotions,
FaceReader, and Py-Feat. Third, we wanted to quantify
facial expressions in considerably longer video record-
ings (~45 min) than those used in previous studies
(1-10 min). We hypothesized that facial expression dif-
ferences between autistic and control children would be
more consistent in longer recordings given that social
interactions are dynamic, and the production of facial
expressions may vary from one minute to another. Fourth,
we hypothesized that differences across groups would be
more clearly evident in our relatively large sample of chil-
dren with autism given that individuals may vary consid-
erably in their production of facial expressions. Fifth, we
hypothesized that differences in facial expressions would
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be stronger within the semi-structured ADOS-2 con-
text that can be easily replicated by other labs and clin-
ics. To achieve these goals, we analyzed full recordings of
ADOS-2 assessments (~45 min) and assessed the agree-
ment across three algorithms in identifying and quanti-
fying facial expressions. Most importantly, we compared
the proportion of facial expressions produced by children
with autism and control children to determine whether
there were consistent significant differences in the quan-
tity of facial expressions across groups.

Methods

Participants

We extracted ADOS-2 video recordings of 100 children
from the National Autism Database of Israel (NADI)
managed by the Azrieli National Centre for Autism and
Neurodevelopment Research (ANCAN). ANCAN is a
collaborative project between Ben-Gurion University
(BGU) and eight clinical sites throughout Israel [27]. All
analyzed recordings were performed at the Soroka Uni-
versity Medical Center (SUMC). NADI contains video
recordings of clinical assessments, along with various
other behavioral and clinical measures from a growing
cohort of children with autism in Israel [28]. All children
were recruited between 2018 and 2024 and their parents
completed informed consent. This study was approved by
the Helsinki committee of SUMC and the IRB committee
of BGU.

The sample included 72 children with autism (17 girls),
3.16-6.91 years old, and 28 typically developing con-
trol children (8 girls), 2.58-6.66 years old (Table 1). This
sample of convenience included all high-quality record-
ings that were available at the time and met the following
criteria. All children completed the Autism Diagnostic
Observation Schedule, Second Edition (ADOS-2) using
module 2 or 3 [29]. All children with autism and none
of the control children exceeded the ADOS-2 cutoff for
autism and met the Diagnostic and Statistical Manual
of Mental Disorders, Fifth Edition (DSM-5 [3]), crite-
ria for autism, as determined by both a physician (child

Table 1 Descriptive statistics of the participating children including their age, sex, ADOS-2 scores and Developmental\Cognitive

score, per group, and comparison across groups

Autism (n=72)

Mean (SD)

Age (years) 467 (SD: 1.03)
Sex (qgirls) n=17,2361%
ADOS-2 scores

Total Calibrated Severity Score (CSS) 6.18 (1.68)

Social Affect (SA) CSS 549 (2.07)

Restricted Repetitive Behaviors (RRB) CSS 77801.7)
Developmental\Cognitive scores* 8541 (17.38)

Control (n=28) Statistics

Mean (SD)

3.84 (SD: 1.09) t(98)=3.55, p<0.001
n=38,2857% x2(1)=0.08, p=0.76

1.5 (0.69) t(98)=8.18, p<0.001
207 (1.21) t(99) =8.18, p<0.001

(98)

(99)
1.64 (1.62) t(98)=16.44,p <0.001
111.11(12.63) t(84) =-6.88, p<0.001

* Developmental\Cognitive scores were available for 86 children, 59 autism and 27 controls

SD=standard deviation
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psychiatrist or pediatric neurologist) and a developmen-
tal psychologist. In addition, 86 of the children completed
a developmental or cognitive assessment as appropriate
for their age. Two children completed the Bayley Scales
of Infant and Toddler Development, Third Edition edi-
tion [30], 46 children completed the Mullen Scales of
Early Learning [31], and 38 completed the Wechsler Pre-
school and Primary Scale of Intelligence (WPPSI-III [32]).

Video recordings

All children were recorded during an ADOS-2 assess-
ment, a semi-structured standardized diagnostic test
for identifying autism. A clinician who had established
research reliability in the administration of the ADOS-2
selected the appropriate module based on the child’s age
and level of expressive language. Recorded ADOS-2 ses-
sions were 32.31-75.9 min long (M=53.19, SD=8.76)
and did not differ across autism and control groups
(autism: M =53.6, SD =9.32, control: M=52.12, SD=6.78,
t(98)=0.75, p=0.45). We analyzed the full recordings,
rather than shorter segments, to capture a broad and
ecologically valid sample of social behavior. As noted
above, we intentionally selected recordings of children
who completed ADOS-2 modules 2 and 3 because they
require the child to sit at a table, making their face clearly
visible to a nearby camera. The ADOS-2 video record-
ings were performed in five different assessment rooms
installed with similar camera systems at SUMC.

Facial expression analysis

We processed the video recordings using three facial
analysis software packages that extract a similar set of
facial expressions from video data. These specific algo-
rithms were selected to compare two commercial options
that have been widely used in autism research (iMotions
and FaceReader) with a promising, open-source alterna-
tive (Py-Feat).

iMotions Commercially available software package that
utilizes the AFFDEX algorithm [16] to detect a face and
the presence of 6 facial expressions on each video frame
(joy, anger, sadness, disgust, surprise, and fear). It returns
a probabilistic score (0-100) representing the degree of
confidence that each facial expression was present in the
frame. Emotion scores were rescaled to a range of 0—1 to
fit the range of the other algorithms.

FaceReader (Noldus Inc.) Commercially available soft-
ware package that utilizes a proprietary computer vision
algorithm to detect a face and the presence of 7 facial
expressions (happy, angry, sad, disgusted, surprised,
scared, and neutral). FaceReader fits a mesh with ~500
vertices to the face and computes a probabilistic score
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(0-1) that a certain facial expression is present in each
frame.

Py-Feat Free, open-source python toolkit that integrates
multiple algorithms for detection of faces, facial land-
marks, facial action units, and facial expressions [19, 33].
We used the img2pose algorithm for face detection [34],
which yields a confidence score (0-1) for the detection of
a face per frame. We used the Resmasknet algorithm [35]
for detecting 7 facial expressions (happiness, anger, dis-
gust, fear, sadness, surprise, and neutral). Unlike the two
commercial algorithms, Resmasknet scores each of the
7 facial expressions with a probabilistic score (0—1) that
represents their likelihood in relative terms such that the
sum of their scores equals one.

Preprocessing

Since there were typically multiple individuals present in
the assessment room and captured in the video record-
ings (i.e., child, parent, and clinician), we manually placed
a bounding box around the child in each movie. Conse-
quently, all data outside the bounding box was excluded
from analysis. While each software required a separate
definition of the bounding box, we used room landmarks
to ensure the bounding box was placed in the same loca-
tion across all three.

Each algorithm detected a face within the specified
bounding box in some, but not all the frames (e.g., when
the child left the bounding box or face landmarks were
not visible). To ensure that the analyzed data included
videos with reliable and continuous face detection, we
excluded frames according to the following criteria. First,
we extracted the pitch, roll, and yaw of the child’s head
per frame from each algorithm and excluded all frames
with values above 75 degrees relative to the camera in any
direction (i.e., child was facing away from the camera).
Second, we excluded isolated video segments, shorter
than 25 frames (approximately 1 s), that were preceded
and followed by frames without valid face detection.
Third, the img2pose algorithm in Py-Feat, unlike the
other two algorithms, also reported a confidence score
for face detection per frame and we excluded frames with
a face score below 0.9.

Finally, we applied a low-pass Gaussian filter with a
width of 11.3 frames (Approximately 0.5 s at half-height)
to smooth the time-course of each facial expression,
thereby minimizing rapid changes in facial expressions
that are likely to result from measurement noise.

Facial analysis measures

All data analysis was performed with custom written
code in Python. First, we computed the number of valid
frames where a face was detected within the child’s pre-
defined bounding box per video. We compared both the
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absolute number of valid frames (in minutes) and their
proportion (i.e., valid face frames divided by total number
of frames in the video). Second, we computed the num-
ber of frames where a given facial expression exceeded
a value of 0.5 (same threshold for all algorithms). This
analysis was performed separately for each of six facial
expressions: anger, fear, sadness, surprise, disgust, and
happiness. For each facial expression, we computed
its proportion relative to the total number of valid face
frames per video. These proportions were compared
across algorithms and across participant groups to ensure
that the results were not influenced by differences in the
length of recorded ADOS assessments or the proportion
of valid face frames. Finally, given that happiness was the
most frequently and consistently identified expression
across all three algorithms, we chose to perform a more
detailed time-course analysis of this facial expression.
We extracted frame-by-frame happiness time-courses
from each algorithm, which contained scaled values of
0-1 representing the confidence of the algorithm that a
happiness facial expression was exhibited by the child on
each video frame. We then calculated pair-wise correla-
tions across algorithms per video, enabling us to assess
their frame-by-frame agreement in identifying happiness.

Statistical analysis
All statistical analyses were performed using custom
written code in Python. Comparison of demographic
and behavioral differences between the ASD and con-
trol groups were performed using independent samples
t-tests for continuous variables (e.g., age) and a Chi-
square test for categorical variables (e.g., sex). Further
comparisons of continuous variables across algorithms
were performed with a repeated-measures Analysis of
Covariance (ANCOVA) test when data was normally dis-
tributed (determined with a Shapiro-Wilk test) and vari-
ance was homogeneous across groups (determined with a
Levene’s test). In other cases, an equivalent non-paramet-
ric Quade’s test was used. In all cases age, sex, and diag-
nosis were included in the statistical models as covariates
to control for their potential impact. For post hoc analy-
ses we used Tukey’s HSD tests following ANCOVAs and
non-parametric Dunn’s tests following Quade’s tests.
Pearson correlation coefficients were computed to
assess relationships across continuous variables. First,
for assessing the similarity of total happiness frames per
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child across algorithm pairs. Second, for assessing pair-
wise algorithm agreement of happiness time courses
per child. Third, for assessing the relationship between
overall quantity of facial expressions and autism sever-
ity (ADOS-2 CSS) per child. Finally, we compared the
strength of Pearson correlation coefficients (after apply-
ing the Fisher z transform) across algorithm pairs and
between diagnostic groups using a mixed linear model
enabling us to account for the repeated measures design
while controlling for the same covariates described
above. All statistical tests were performed with a signifi-
cance level set to a=0.05.

Results

We first compared the ability of the three algorithms to
detect the child’s face on individual frames of each movie.
ANCOVA analyses with age, sex, and diagnosis as covari-
ates revealed that face detection differed significantly
across the three algorithms when comparing either the
absolute number of valid face frames or their proportion
relative to video length (Table 2). Tukey’s HSD post hoc
test demonstrated that the absolute number of valid face
frames detected by iMotions (M =21.76, SD=9.35) was
significantly lower compared to FaceReader (M =31.61,
SD=9.69, p=0.001) and Py-Feat (M =31.19, SD=10.25,
p=0.001). Similarly, the proportion of valid face frames
detected by iMotions (M=0.43, SD=0.16) was sig-
nificantly lower compared to FaceReader (M=0.63,
SD=0.16, p<0.001) and Py-Feat (M=0.62, SD=0.17,
p<0.001). There were no significant differences between
FaceReader and Py-Feat in either measure.

The absolute number and proportion of valid face
frames was larger in controls than children with autism
(absolute number: F(1, 294) =37.43, p<0.001, n* = 0.113,
proportion: F(1, 294)=59.19, p<0.001, n*> = 0.168) and
larger in older versus younger children (absolute number:
F(1, 294)=27.33, p<0.001, n* = 0.085, proportion: F(1,
294)=21.46, p<0.001, n* = 0.068). There were no signifi-
cant differences between boys and girls. This indicated
that diagnosis and age, but not sex, had an impact on suc-
cessful face detection by the algorithms.

Facial expression analyses

Next, we compared the proportion of frames with facial
expressions of anger, fear, happiness, sadness, sur-
prise, and disgust across the algorithms using a series

Table 2 Comparison of the number and proportion of valid face frames across algorithms

iMotions FaceReader Py-Feat Statistics

Mean (SD) Mean (SD) Mean (SD) ANCOVA
Valid face frames 21.76 (9.35) 31.61(9.69) 31.19(10.25) F(2,294)=37.54,p<0.001
(in minutes)
Proportion of valid face frames 0.43(0.16) 0.63(0.16) 0.62 (0.17) F(2,294)=55.68, p<0.001

ANCOVA with age, sex, and diagnosis as covariates
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Table 3 Proportion of frames with identified facial expressions
per algorithm

iMotions FaceReader  Py-Feat Statistics
Mean (SD) Mean (SD) Mean (SD) Quade’s
test.
Happiness 441 (4.32) 11.35(6.99) 18.74(12.50) F=856.44,
p<0.001
Anger 0.15(0.16) 0.49 (0.38) 1.03 (1.05) F=840.77,
p<0.001
Disgust 032(049) 091(0.73) 1.07 (2.36) F=637.11,
p<0.001
Fear 0.09(0.10)  048(0.39) 573 (641) F=2365.66,
p<0.001
Sadness 0.21 (0.95) 449 (4.14) 22.59(16.89) F=3032.29,
p<0.001
Surprise 091 (1.42) 141 (1.53) 5.02 (7.04) F=711.54,
p<0.001

Non-parametric Quade’s tests with age, sex, and diagnosis as covariates

of non-parametric Quade’s tests, while controlling for
age, sex, and diagnosis. The analyses revealed signifi-
cant differences across algorithms for all facial expres-
sions (all p<0.001, see Table 3) but not for age, sex, or
diagnosis covariates. These analyses indicated that dif-
ferences across algorithms were similar for autistic and
control children (diagnosis covariate was not significant)
and happiness was the most frequent facial expression
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consistently identified by all three algorithms. All sig-
nificant differences survive Bonferroni correction for six
comparisons.

To assess algorithm agreement per child, we performed
follow-up correlation analyses with the happiness facial
expression given its prominence. We extracted the pro-
portion of happiness frames per child, per algorithm, and
computed Pearson correlation coefficients across algo-
rithm pairs, separately for the autism and control groups
(Fig. 1).

Pearson correlations between FaceReader and iMo-
tions were relatively high (autism: r=0.75, p <0.001, con-
trol: r=0.64, p<0.001) and correlations of FaceReader
with Py-Feat (autism: r=0.37, p=0.001, control: r=0.44,
p=0.02) or iMotions with Py-Feat (autism: r=0.37,
p=0.002, control: r=0.55, p=0.003) were lower. While all
correlations except for FaceReader with Py-Feat were sig-
nificant after Bonferroni correction for six multiple com-
parisons, most effect sizes were in the low to medium
range, suggesting relatively weak agreement across
algorithms.

Happiness time courses

To examine agreement across algorithms further, we
extracted frame-by-frame time-courses of happiness per
child, per algorithm. Each time-course contained scaled
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values of 0-1 representing the confidence of the algo-
rithm that a happiness facial expression was exhibited
by the child on a given video frame. We then computed
the Pearson correlation across time-courses of algorithm
pairs to assess their temporal agreement. These analyses
revealed heterogeneous results across children/record-
ings (Fig. 2), with some children exhibiting strong corre-
lations that were 3—4 times stronger than others.

To compare the strength of temporal correlations
across algorithm pairs and between diagnostic groups
we performed a mixed linear model analysis after apply-
ing a Fisher Z transformation to the correlation values.
This analysis revealed significant differences across algo-
rithm pairs (z>4.0, p<0.001). Post-hoc analyses showed
that FaceReader-Py-Feat exhibited the highest tempo-
ral agreement (mean r=0.66), followed by FaceReader-
iMotions (mean r=0.61), and iMotions-Py-Feat (mean
r=0.52). There was no significant difference across autis-
tic and control children (z=-0.305, p=0.760) and no
significant interaction between diagnosis and algorithm
pairs (p>0.13). Hence temporal agreement across algo-
rithms differed significantly regardless of diagnosis.

No differences in the quantity of facial expressions
between autism and control children

To compare the proportion of frames with each of the
6 facial expressions across participant groups, a series
of non-parametric Quade tests were conducted. These
analyses, which controlled for age, sex and proportion
of valid face frames, revealed no significant differences
between groups, regardless of algorithm used (Table 4).

Relationship with autism severity

In a final analysis we examined whether overall pro-
duction of facial expressions was related to the sever-
ity of core autism symptoms as estimated by ADOS-2
CSS scores. We calculated the proportion of frames
with any facial expression per subject and computed
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Pearson correlation with total ADOS-2 CSS scores sepa-
rately for each diagnostic group (Fig. 3). There were no
significant correlations when performing this analysis
with FaceReader (ASD: r=-0.15, p=0.2, control: r=0.06,
p=0.77), iMotions (ASD: r=-0.08, p=0.5, control: r=-
0.15, p=0.46) or Py-Feat (ASD: r=0.11, p=0.36, control:
r=-0.31, p=0.11). These findings suggest that the quan-
tity of facial expressions was not consistently related to
the severity of core autism symptoms as estimated by the
ADOS-2.

Discussion

All children with autism exhibit difficulties in non-verbal
social communication, by definition, since it is a core
diagnostic feature. However, these difficulties can be
manifested in many ways that may or may not include
atypical production of facial expressions. Moreover, atyp-
icalities may include differences in the quantity, quality
(e.g., shape or temporal dynamics), timing, or social con-
text of facial expressions.

Our results show that both children with autism and
controls exhibit large heterogeneity in the quantity of
spontaneous facial expressions produced during a semi-
structured social interaction with a clinician (Fig. 1).
However, the quantity of facial expressions did not dif-
fer significantly between the two groups in any of the
examined facial expressions, including happiness, anger,
disgust, fear, sadness, or surprise (Table 4). These results
were consistent across three different facial analysis algo-
rithms (iMotions, FaceReader, and Py-Feat) and suggest
that potential facial expression atypicalities in children
with autism are not necessarily apparent in their quantity
during a social interaction.

Facial expression atypicalities in autism

Previous studies, using a variety of different techniques
and experimental designs, have reported mixed results
with some reporting no significant differences in the
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Table 4 Comparison of the proportion of frames with facial
expression across autism and control groups

Algorithm Facial Autism Control Statis-
expression tics
Mean (SD) Mean (SD) Quade’s
test
iMotions happiness 391(3.72) 5.69 (5.45) F=038,
p=0.53
anger 0.15(0.14) 0.16 (0.19) F=0.00,
p=097
disgust 0.33(042) 0.29 (0.64) F=0.06,
p=0.281
fear 0.10(0.12)  0.08 (0.07) F=0.79,
p=0.37
sadness 0.25(1.11) 0.10(0.08) F=1.78,
p=0.18
surprise 0.82 (1.41) 1.12(1.45) F=0.17,
p=0.68
FaceReader happiness 1161 (730) 10.70(6.20) F=0.03,
p=0.86
anger 0.54(041)  034(0.23) F=142,
p=023
disgust 0.95 (0.75) 0.83 (0.68) F=0.06,
p=0.80
fear 048 (0.38) 0.49 (042) F=0.37,
p=054
sadness 425 (4.07) 5.11(4.31) F=227,
p=0.13
surprise 1.28(1.42) 1.73(1.76) F=0.23,
p=0.63
Py-Feat happiness 1828 (12.66) 19.92 (12.21) F=1.54,
p=0.21
anger 1.07 (1.06) 0.94 (1.03) F=0.37,
p=054
disgust 097 (1.11) 1.33(4.13) F=1.04,
p=031
fear 6.33 (7.09) 4.21(3.87) F=1.24,
p=026
sadness 23.17(16.76) 21.10(17.45) F=032,
p=057
surprise 445645  647(831) F=0.01,
p=091

Non-parametric quade’s tests, controlling for age, sex, and proportion of valid
frames were performed separately for each of the three algorithms

amount of facial expressions produced by individuals
with autism relative to controls [13], as we also report
here, and others reporting reduced frequency of smiling
and more neutral expressions in the autism group [12, 24,
25, 26].

Multiple factors may explain differences between pre-
viously reported results and our own. Prior work often
examined considerably shorter video recordings of
social interaction (1-8 min) that may have yielded spuri-
ous findings by chance due to the limited video sample
examined [24-26]. Our video samples were much longer
(53 min on average), providing considerably larger oppor-
tunity to identify facial expressions than was previously
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possible. Since facial expression frequency may vary over
time, extensive sampling is needed for establishing reli-
ability. Indeed, future research would benefit greatly from
multi-day recordings per subject to establish test-retest
reliability.

Another factor is the context of the video record-
ing, which is likely to influence the amount and type of
facial expressions exhibited by the children. Some who
reported differences across groups used unique contexts
with specific scripted tasks or dialogues with a research
assistant [25, 24]. Others utilized specialized assess-
ments, such as the Early Social Communication Scales
[12, 13], which require training and are not commonly
administered in clinical or research settings. In contrast,
our study utilized recordings of the ADOS-2 assessment
which constrains the recordings to a reproducible context
that is widely used and easy to replicate although it also
requires training and maintaining research reliability.

A third factor that may explain differences between our
study and previous ones is the age of the participants.
Our participants were relatively young children (ages
2-8-years-old), whereas other studies recruited adoles-
cents [24] and adults [25, 26]. The ability to produce facial
expressions develops continuously throughout child-
hood and adolescence in the general population, with full
maturity typically achieved in late adolescence [36, 37].
Hence, differences across autism and control groups may
vary with age as a function of facial expression maturity
and the ability of the algorithms to accurately identify
age-specific facial expressions.

Differences across facial analysis algorithms

Advances in computer vision and machine learning
techniques have led to the development of multiple
automated algorithms for the identification of facial
expressions [38]. While some algorithms may yield high
accuracy (~90%) when applied to video recordings of
adults in controlled lab settings where the participant
faces the camera, performance drops significantly (~50%)
when applied to “realworld” scenarios [39]. Factors such
as lighting, angle of the face relative to the camera, and
partial occlusions (e.g., wearing glasses or a hat) are key
challenges [14]. Since most algorithms were trained with
images of adults performing specific facial expressions,
which often include posed and exaggerated expressions
[40, 41], their ability to accurately identify facial expres-
sions of children during naturalistic interactions may not
be as high as often claimed by commercial vendors.

An important contribution of the current study was
examining the reliability of automated facial expres-
sion analyses across different algorithms used to analyze
the same video recordings. We found significant sys-
tematic differences in the algorithms’ ability to detect
faces and identify facial expressions. FaceReader and
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Py-Feat detected faces in 50% more frames than iMo-
tions (Table 2), and Py-Feat identified emotions in three
to four times as many frames as FaceReader and iMotions
(Table 3; Fig. 3). These findings extend previous reports
of variability across algorithms when examining typi-
cally developing adults [14]. In addition to differences in
face detection, there were also significant differences in
the ability of the algorithms to identify facial expressions
on individual frames (Table 3) as well as poor agree-
ment across algorithms in quantifying the total amount
of smiles exhibited by individual children and their tem-
poral time-courses (Figs. 1 and 2). These results highlight
an urgent need to develop new open-source facial analy-
sis algorithms that are specifically trained to identify the
facial expressions of young children filmed in naturalistic
interactions. Achieving this goal will require the estab-
lishment of large open-science video repositories (e.g.,
[42]), with manually annotated videos that can serve as
“groundtruth” datasets for training and testing new facial
analysis algorithms.

Validating facial analysis algorithms for use with autis-
tic populations may also require manual annotation of
autistic facial expressions given that previous findings
that autistic facial expressions are more ambiguous, awk-
ward, and atypical whether rated by typically developing
[7-9] and autistic [10] annotators. Since all existing algo-
rithms (including those in the current study) were trained
only with videos of neurotypical individuals that were
annotated by neurotypical individuals, they are unlikely
to recognize potentially unique facial expressions exhib-
ited by individuals with autism.

Given all the limitations of existing facial analysis algo-
rithms, it is particularly interesting that we did not find
any significant differences in the quantity of facial expres-
sion across autism and control groups when using all
three algorithms. One may have expected algorithms
trained only on neurotypical facial expressions to identify

fewer frames with facial expressions in videos of children
with autism than in controls. Nevertheless, all three algo-
rithms identified comparable amounts of facial expres-
sions in videos of the autistic and control children.

Limitations

Our study had several limitations. First and foremost, we
did not compare the results from each of the algorithms
to manually annotated data (i.e., ground truth). We,
therefore, only examined the reliability of results across
algorithms rather than their validity (i.e., accuracy). As
noted above, establishing open-science repositories with
manually annotated videos is critical for validation of
existing facial analysis algorithms and for the develop-
ment of new ones. Second, all participating children
completed ADOS-2 assessments using modules 2 and 3,
which require the child to sit at a table and engage in ver-
bal interactions. As such, our findings are relevant only to
verbal children with autism. Third, we limited our analy-
ses to quantifying the presence of specific facial expres-
sions and did not examine their quality, timing, or social
context. Fourth, while our sample size was one of the
largest to date, it is still small for capturing the large het-
erogeneity clearly apparent across children with autism
and controls. Indeed, the promise of automated facial
analysis algorithms is to scale such analyses to thousands
of participants with extensive multi-day video record-
ings per subject that would be necessary to establish test-
retest reliability.

Conclusions

Young children with autism produce similar quantities
of spontaneous facial expressions during naturalistic
social interactions compared to their typically develop-
ing peers. This suggests that difficulties in non-verbal
social communication in verbal children with autism
may be more related to the quality, timing, or contextual
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appropriateness of facial expressions rather than their
overall frequency. Significant variability in the output of
the three facial analysis algorithms highlights the cur-
rent limitations of automated facial expression recog-
nition, particularly when applied to young children in
naturalistic settings. These results emphasize the need
to develop and validate more reliable open-source algo-
rithms and large, annotated video repositories that can
serve as ground truth datasets for training and testing.
Such advancements are critical for enabling robust and
scalable studies of facial expressions in autism, ultimately
contributing to better diagnostic tools and interventions.
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