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Comparison of three bioinformatics 
tools in the detection of ASD 
candidate variants from whole 
exome sequencing data
Apurba Shil 1,2,3, Liron Levin 4, Hava Golan 2,3,5, Gal Meiri 2,6, Analya Michaelovski 2,7, 
Yair Sadaka 2,8, Adi Aran 9,10, Ilan Dinstein 2,3,11 & Idan Menashe 1,2,3*

Autism spectrum disorder (ASD) is a heterogenous multifactorial neurodevelopmental condition 
with a significant genetic susceptibility component. Thus, identifying genetic variations associated 
with ASD is a complex task. Whole-exome sequencing (WES) is an effective approach for detecting 
extremely rare protein-coding single-nucleotide variants (SNVs) and short insertions/deletions 
(INDELs). However, interpreting these variants’ functional and clinical consequences requires 
integrating multifaceted genomic information. We compared the concordance and effectiveness of 
three bioinformatics tools in detecting ASD candidate variants (SNVs and short INDELs) from WES 
data of 220 ASD family trios registered in the National Autism Database of Israel. We studied only 
rare (< 1% population frequency) proband-specific variants. According to the American College of 
Medical Genetics (ACMG) guidelines, the pathogenicity of variants was evaluated by the InterVar and 
TAPES tools. In addition, likely gene-disrupting (LGD) variants were detected based on an in-house 
bioinformatics tool, Psi-Variant, that integrates results from seven in-silico prediction tools. Overall, 
372 variants in 311 genes distributed in 168 probands were detected by these tools. The overlap 
between the tools was 64.1, 22.9, and 23.1% for InterVar–TAPES, InterVar–Psi-Variant, and TAPES–
Psi-Variant, respectively. The intersection between InterVar and Psi-Variant (I ∩ P) was the most 
effective approach in detecting variants in known ASD genes (PPV = 0.274; OR = 7.09, 95% CI = 3.92–
12.22), while the union of InterVar and Psi Variant (I U P) achieved the highest diagnostic yield (20.5%).
Our results suggest that integrating different variant interpretation approaches in detecting ASD 
candidate variants from WES data is superior to each approach alone. The inclusion of additional 
criteria could further improve the detection of ASD candidate variants.
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ASD  Autism spectrum disorder
C.I.  Confidence interval
GATK  Genome analysis toolkit
LGD  Likely gene disrupting
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LP  Likely pathogenic
ML  Machine learning
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NADI  National autism database in Israel
NGS  Next-generation sequencing
OR  Odds ratio
P  Pathogenic
PPV  Positive predictive value
SNV  Single nucleotide variants
VEP  Variant effect predictor
Vcf  Variant calling format
VUS  Variants of uncertain significance
WES  Whole exome sequencing

Autism spectrum disorder (ASD) comprises a collection of heterogeneous neurodevelopmental disorders that 
share two behavioral characteristics—difficulties in social communication and restricted, repetitive behaviors 
and  interests1,2. The etiology of ASD has a significant genetic component, as is evident from multiple twin and 
family  studies3–6. Yet, over the years, very few genetic causes of ASD have been discovered; thus, today, despite 
extensive research, an understanding of the overall genetic architecture of ASD remains  obscure6,7.

The emergence of next-generation sequencing (NGS) approaches in the past decade has transformed the 
genetic research of complex  traits8. These NGS technologies have facilitated high-throughput DNA sequenc-
ing for large cohorts of patients, allowing the comparison of multiple variants that includes single-nucleotide 
variants (SNVs) and short insertions/deletions (INDELs) between large groups of  patients9–12. In this realm, 
whole-exome sequencing (WES) is particularly suitable for studying the genetics of heterogenous traits such as 
ASD, as it focuses on a relatively limited number of protein-coding  variants9,10,13–18.

However, understanding the functional consequences of coding variants is not a trivial task. In 2015, the 
American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology 
(AMP) published standards and guidelines to generalize sequence variant interpretation and to address the issue 
of inconsistent interpretation across  laboratories8. The resulting system for classifying variants recommends 
28 criteria (16 for pathogenic and 12 for benign variants) and provides a set of scoring rules based on variant 
population allele frequency, variant functional annotation, variant familial segregation, etc.8,19; Variants are clas-
sified as pathogenic (P), likely pathogenic (LP), variants of uncertain significance (VUS), likely benign (LB) or 
benign (B). Subsequently, multiple in-silico tools were developed to implement these ACMG/AMP criteria for 
annotating the prospective pathogenicity of variants detected in WES studies.

While the ACMG/AMP scoring approach is highly effective for detecting de-novo highly penetrant muta-
tions for rare Mendelian disorders, it is less suitable for detecting inherited partially penetrant  variants20. Such 
variants, usually annotated as VUS in terms of the ACMP/AMP criteria, are expected to contribute significantly 
to the risk of developing neurodevelopmental conditions, including  ASD9,17,18,21,22. Thus, relying solely on the 
ACMG/AMP criteria for variant annotation in WES studies of ASD may result in an under-representation of 
susceptibility variants, which will lead to a lower diagnostic yield for ASD. To overcome this potential limitation, 
we have developed “Psi-Variant,” a pipeline to detect different types of likely gene-disrupting (LGD) variants, 
including protein truncating and deleterious missense variants. We applied Psi-Variant – in comparison with 
InterVar and TAPES, two variant interpretation tools that use the ACMG/AMP criteria – to a large WES dataset 
of ASD to evaluate the concordance between these tools to detect variants and to assess their effectiveness in 
detecting ASD susceptibility variants.

Methods
Study sample
Initially, the study sample comprised 250 children diagnosed with ASD who are registered in the National 
Autism Database of Israel (NADI)23,24 and whose parents gave consent for participation in this study. Based on 
our clinical records, none of the parents in the study has been diagnosed with ASD, intellectual disability, or any 
other type of neurodevelopmental disorder. Genomic DNA was extracted from saliva samples from participat-
ing children and their parents using Oragene®•DNA (OG-500/575) collection kits (DNA Genotek, Canada).

Whole exome sequencing
WES analysis was performed on the above-mentioned samples with Illumina HiSeq sequencers, followed by 
the Illumina Nextera exome capture kit at the Broad Institute as part of the Autism Sequencing Consortium, 
described  previously11. Sequencing reads aligned to Genome Reference Consortium Human Build 38 and aggre-
gated into BAM/CRAM files were analyzed using the Genome Analysis Toolkit (GATK)25 to generate a joint 
variant calling format (vcf) file for all subjects in the study. We excluded data for 30 probands from the raw vcf 
file due to incomplete pedigree information or low-quality WES data. Thus, WES data for 220 ASD trios were 
analyzed in this study (Fig. 1).

Data analysis
The variant detection process in this study is outlined in Fig. 1. and explained below.

Data cleaning
The raw vcf file contained 1,935,632 variants. From this file, we removed variants with missing genotypes and/or 
variants in regions with low read coverage (≤ 20 reads) and/or with low genotype quality (GQ ≤ 50). In addition, 
we removed all common variants (i.e., those with a population minor allele frequency > 1% as per the Genome 
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Aggregation Database (gnomAD))26,27 as well as those that did not pass the GATK’s “VQSR” and “ExcessHet” 
filters. Thereafter, we used an in-house machine learning (ML) algorithm to remove other potentially false-
positive variants. The details of this ML algorithm and its efficiency in classifying true positive and false positive 
variants are summarized in the supplementary file S1. Finally, we used the pedigree structure of the families to 
identify proband-specific genotypes, including de-novo variants, recessively inherited variants, and X-linked 
variants (in males). Recessively inherited variants occur in the same loci of both copies of a gene in autosomes 

Figure 1.  Analysis workflow for detecting LP/P/LGD variants from the WES data. InterVar and TAPES 
detected LP/P variants by implementing ACMG/AMP criteria. Psi-Variant detected LGD variants by utilizing 
in-house criteria.
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(where both the parents are carriers). Whereas one altered copy of the gene in chromosome X among males is 
defined as X-linked (males). We removed multiallelic variants from these genotypes and those classified as “de-
novo” that appeared in more than two individuals in the sample. In this study, we haven’t considered compound 
heterozygote variants (in cis/trans).

Identifying ASD candidate variants
We searched for candidate ASD Variants using three complementary approaches. First, we applied InterVar19 and 
TAPES28, two commonly used publicly available command-line tools that use ACMG/AMP  criteria8, to detect 
LP/P Variants. In addition, we assigned the ACMG/AMP PS2 criterion to all the de-novo Variants to detect addi-
tional LP/P Variants from the list of VUS. Since InterVar and TAPES are less sensitive tools for detecting recessive 
possible gene disrupting (LGD)  variants20, we developed an integrated in-house tool, Psi-Variant, to detect LGD 
variants. The Psi-Variant workflow starts using Ensembl’s Variant Effect Predictor (VEP)26 to annotate the func-
tional consequences for each variant in a multi-sample vcf file. Then, all frameshift indels, nonsense, and splice 
acceptor/donor variants are further analyzed by the  LoFtool29 with scores of < 0.25 are annotated as intolerant 
variants. In addition, it applies six different in-silico tools to all missense substitutions to determine their likeli-
hood to be “deleterious/damaging” using the following cutoffs:  SIFT30 (< 0.05), PolyPhen-231 (≥ 0.15),  CADD32 
(> 20),  REVEL33 (> 0.50),  M_CAP34 (> 0.025) and  MPC35 (≥ 2) as recommended by the dbNSFP  database36.

Comparison between InterVar, TAPES, and Psi-variant
We compared the number of variants detected by the three tools and the percentages of variants detected by 
different combinations. Thereafter, we used the list of ASD genes (n = 1031) from the SFARI Gene  database37 
(accessed on 11 January 2022) as the gold standard to compute the odds ratio (OR) and positive predictive value 
(PPV) for detecting candidate ASD variants in SFARI genes. In addition, we assessed the diagnostic yield (%) for 
each tool combination by computing the proportion of children with detected candidate ASD variants in SFARI 
genes. Diagnostic yield (%) was computed as the proportion of ASD probands with at least one ASD candidate 
variant out of the total affected ASD probands with complete pedigree.

Software
Data storage, management, and analysis were conducted on a high-performing computer cluster in a Linux 
environment using Python version 3.5 and R Studio version 1.1.456. All the statistical analyses and data visuali-
zations were incorporated into R Studio.

Ethics approval and consent to participate
Informed consent was obtained from all the families involved in the study.

Institutional review board statement
The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Ethics 
Committee of Soroka University Medical Center (SOR-076-15; 17 April 2016).

Results
Determining the detection threshold for Psi-Variant
Psi-Variant integrates information from six in-silico tools that assess the functional consequence of missense 
variants. We examined the positive predictive value (PPV) and diagnostic yield for different numbers of in-silico 
tools annotating missense variants as “deleterious/damaging” (Fig. 2). There was a strong and statistically signifi-
cant negative linear correlation (r = −0.98, p < 0.01) between the PPV and diagnostic yield for different detection 
thresholds with no noticeable optimal threshold (e.g., an increase in PPV without a comparable decrease in yield). 
Thus, we decided to use a conservative threshold of ≥ 5 tools for this study since it detected a similar number of 
variants as detected by both InterVar and TAPES (see below).

Detection of candidate variants by the different tools
A total of 372 variants in 168 probands (highlighted in the supplementary Table S2) were detected by at least one 
of InterVar (n = 220), TAPES (n  = 199), or Psi-Variant (n = 187) from a dataset of 2,035 high-quality, ultra-rare 
variants with proband-specific genotypes (Fig. 1). Of these, 55 variants (14.8%) were detected by all three tools. 
The highest concordance in detected variants was observed between InterVar and TAPES (64.3%), followed by 
TAPES and Psi-Variant (23.1%) and InterVar and Psi-Variant (22.9%).

The characteristics of the detected variants are shown in Table 1. As expected, missense variants comprised the 
majority of detected variants, with 58.8%, 53.5%, and 51.4% of the variants detected by TAPES, Psi-Variant, and 
InterVar, respectively. Notably, a higher rate of frameshift variants was detected by Psi-Variant than by InterVar 
and TAPES (31.5% vs. 17.7% and 11.1%, respectively).

Almost all (≥ 95%) variants detected by either InterVar or TAPES were de-novo variants, while de-novo vari-
ants comprised only 54.5% of the variants detected by Psi-Variant, which also detected a high portion of X-linked 
and autosomal recessive variants (17.6% and 27.8%, respectively). Examination of the distribution of the detected 
variants in genes associated with ASD according to the SFARI Gene  database37 revealed a two-fold enrichment 
of variants distributed in ASD genes (for all detection tools) compared to their portion in the clean vcf file and 
even a higher enrichment of variants distributed in high-confidence ASD genes (P < 0.001).
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Effectiveness of ASD candidate variants detection
To assess the effectiveness of the different tools in detecting ASD candidate variants, we calculated the PPV and 
the OR for detecting ASD genes (i.e., those listed in the SFARI Gene  database37) for different combinations of 
utilization of the three tools. The results of these analyses are shown in Fig. 3. Utilization of any of the three 
tools resulted in a significant enrichment of ASD genes, with the highest enrichment being observed in variants 
detected by both InterVar and Psi-Variant (PPV = 0.178; OR = 4.10, 95% confidence interval (C.I.) = 2.77–5.90; and 
PPV = 0.176; OR = 4.02, 95% C.I. = 2.63–5.95) followed by TAPES (PPV = 0.158; OR = 3.53, 95% C.I. = 2.28–5.27). 
Notably, the best performance in detecting ASD candidate variants was obtained at the intersection of the 
detected variants between InterVar and Psi-Variant (I ∩ P) (PPV = 0.274; OR = 7.09, 95% CI = 3.92–12.22). The 
I ∩ P combination was also the most effective in detecting SNVs in high-confidence ASD genes (i.e., those 
with a score of 1 in the SFARI Gene  database37 (Fig. 3A-B). However, the I ∩ P combination had a relatively 

Figure 2.  Performance of Psi-Variant using different detection thresholds. The positive predictive value (PPV; 
X-axis) and diagnostic yield (Y-axis) for different number of in-silico tools annotating missense variants as 
“deleterious/damaging”. Increasing the minimal number of detection tools increases the PPV but proportionally 
decreases the detection yield.

Table 1.  Characteristics of the detected variants by InterVar, TAPES, and Psi-Variant from the WES data.

Characteristics Preliminary output (n = 1,213,319) InterVar (n = 220) TAPES (n = 199) Psi-Variant (n = 187)

Functional consequence

Frameshift (insertions/deletions) 4232 (0.349%) 39 (17.7%) * 22 (11.1%) * 59 (31.5%) *

Missense 95,919 (7.91%) 113 (51.4%) * 117 (58.8%) * 100 (53.5%) *

Stop Gain/Loss/retain,

Start Gain/Loss 2105 (0.17%) 16 (7.27%) * 13 (6.53%) * 14 (7.5%) *

Non-frameshift/in-frame 4062 (0.33%) 42 (19.1%) * 43 (21.61%) * –

Splice acceptor/donor/region 18,817 (1.55%) 4 (1.82%) 4 (2.01%) 11 (5.9%) *

Synonymous, downstream/upstream gene, 
intron variant 871,205 (71.8%) 6 (2.73%) 0 (0%) –

Other 216,979 (17.9%) – – 3 (1.6%) *

Inheritance pattern

De-novo 43,052 (3.55%) 209 (95%) * 193 (97%) * 102 (54.5%) *

Autosomal recessive 70,948 (5.85%) 9 (4.09%) 5 (2.51%) 52 (27.8%) *

X-linked 9103 (0.75%) 2 (0.91%) * 1 (0.5%) * 33 (17.6%) *

Other 1,090,216 (89.8%) – – –

Gene type

SFARI genes with a score 1 19,236 (1.58%) 15 (6.82%) * 12 (6.03%) * 16 (8.56%) *

All SFARI genes (with scores 1–3) 93,681 (7.72%) 32 (14.5%) * 24 (12.1%) * 33 (17.6%) *

Other genes 1,119,638 (92.28%) 188 (85.4%) * 175 (87.9%) * 154 (82.3%)*

* < 0.05 level of significance; two-sided two 
proportions Z test
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Figure 3.  Effectiveness of InterVar (I), TAPES (T), Psi-Variant (P), and their combinations in detecting 
candidate variants in ASD genes. (A) Positive predictive value (PPV) of detecting candidate variants in SFARI 1 
and all SFARI genes. (B) Odds Ratios (ORs) of detecting candidate variants in SFARI 1 and all SFARI genes. (C) 
Diagnostic yield (%) achieved by the different tool combinations for detecting candidate variants in SFARI 1 and 
all SFARI genes.
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low diagnostic yield of 7.3% for SFARI genes. On the other hand, the union of InterVar and Psi-Variant (I U 
P) achieved a diagnostic yield of 20.5% (Fig. 3C), but its effectiveness in detecting variants in SFARI genes was 
lower (PPV = 0.159; OR = 3.59, 95% C.I. = 2.57–4.91) (Fig. 3A-B).

Discussion
In this study, we assessed the concordance and effectiveness of three bioinformatics tools in the interpretation 
of variants detected in the WES of children with ASD. There was better agreement in variant detection between 
InterVar and TAPES than between Psi-Variant and each of these two tools, probably because both InterVar and 
TAPES are based on the ACMG/AMP  guidelines8, while Psi-Variant uses the interpretation of seven in-silico 
tools in assessing the functional consequences of LGD variants. In addition, most (94%) of the variants detected 
by either InterVar or TAPES were de-novo variants, compared to only 54.5% of the variants detected by Psi-
Variant. This difference may be attributed to the fact that ACMG/AMP guidelines are particularly designed to 
detect de-novo highly penetrant variants, while inherited variants (autosomal recessive and X-linked) are usu-
ally classified as  VUS20. Of note, seven of these variants were detected by both InterVar and TAPES as de-novo 
variants in more than one proband from different families, thus raising the possibility for false positive findings. 
On the other hand, Psi-Variant detected more homozygote recessive variants than InterVar and TAPES (52 vs. 10 
and 5 respectively) and more than estimated in a previously large  study18 suggesting some of them may be false 
positive. However, it also could be partially explained by the ethnic mixture of the study sample, that included 
many children from consanguineous Bedouin families. Indeed, most of these recessive variants were found in 
Bedouin children. Importantly, such rare inherited variants have been found to be associated with a variety of 
neurodevelopmental conditions, including  ASD9,17,18,21,22. Another major difference between these tools lies in 
the detection of in-frame insertions/deletions that comprised ~ 20% of the variants detected by either InterVar or 
TAPES, while such SNVs were discarded by Psi-Variant. We decided to exclude these variants from Psi-Variant 
because their clinical relevance has been demonstrated in several genetic  disorders38,39 but not in  ASD40–42.

Another important factor that could affect the concordance between the three tools is the annotation tools 
they use. Specifically, both InterVar and TAPES use  AnnoVar43 for their variant annotation, while Psi-Variant uses 
Ensembl’s  VEP26. It has already been shown that AnnoVar and VEP have a low concordance in the classification 
of LoF  variants44. In addition, each tool, InterVar, TAPES, and Psi-Variant, utilizes a different set of in-silico tools 
for the classification of missense variants, with  SIFT30 alone being shared by all three tools.

Today, there are no accepted guidelines for detecting ASD susceptibility variants from WES data. Many 
genetic labs use the ACMG/AMP  guidelines8, leading to a relatively low diagnostic  yield45,46. Our findings sug-
gest that different combinations of bioinformatics tools for variant interpretation may improve the detection 
of ASD susceptibility variants. Furthermore, combining these tools provides more flexibility in selecting the 
desired proportion between the detection yield and false positives. Thus, future guidelines for the detection of 
ASD susceptibility variants should consider the integration of different variant interpretation criteria.

Of note, many of the variants detected by the integrative pipeline affect genes with no known association with 
ASD, according to the SFARI Gene  database37. This finding highlights the capability of the integrative pipeline to 
detect novel ASD genes. In addition, the combination of these tools could be used for detection and prioritiza-
tion of susceptibility genetic variants of other medical conditions and human traits. Obviously, the validity of 
our findings and the applicability of these tools for other conditions should be assessed in additional studies.

The results of this study should be considered under the following limitations. First, the effectiveness assess-
ments of the different tools and their combinations were based on ASD genes from the SFARI Gene  database37. 
While this is the most commonly used database for ASD genes and is continuously updated, it is based on data 
curated from the literature and may thus include genes falsely associated with ASD. Second, the variant detec-
tion analyses were performed on WES data of a cohort from the Israeli population, which may not necessarily 
be representative of the genetic architecture of ASD. Third, the tools used in this study were designed to detect 
only extremely rare variants with relatively large functional effects. Thus, a more effective approach for the detec-
tion of ASD susceptibility variants should also include the interpretation of other types of genomic variations, 
such as copy-number and compound heterozygote  variants47–52, as well as other variants with milder functional 
 effects17,53,54. Finally, it should be noted that there are many other approaches for variant interpretation from 
WES data. Thus, it is possible that combinations of other approaches will be more effective in the detection of 
ASD susceptibility variants from WES data than the approaches investigated in this study.

Conclusions
Our findings suggest that combination of different bioinformatics tools is more effective in the detection of ASD 
candidate variants from WES data than each of the examined tools alone. Future guidelines for the detection of 
ASD susceptibility variants should consider integrating different variant interpretation approaches to improve 
the effectiveness of ASD candidate variants detection from whole exome sequencing data.

Data availability
WES data were generated as part of the ASC and are available in dbGaP with study accession: phs000298.v4.p3. 
The generated results and codes are available in a GitHub public repository: https:// github. com/ AppWi ck- hub/ 
Psi- Varia nt or available upon reasonable request to the corresponding author, Prof. Idan Menashe (idanmen@
bgu.ac.il).
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